當前位置: 網(wǎng)校排名> 新東方在線> 高中數(shù)學知識點:導數(shù)
新東方在線 高二輔導培訓

高二輔導

發(fā)布時間: 2016年06月07日

高中數(shù)學知識點:導數(shù)

 

    導數(shù)是微積分中的重要基礎(chǔ)概念。當自變量的增量趨于零時,因變量的增量與自變量的增量之商的極限。在一個函數(shù)存在導數(shù)時,稱這個函數(shù)可導或者可微分??蓪У暮瘮?shù)一定連續(xù)。不連續(xù)的函數(shù)一定不可導。導數(shù)實質(zhì)上就是一個求極限的過程,導數(shù)的四則運算法則來源于極限的四則運算法則。

(一)導數(shù)第一定義

設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 △x 也在該鄰域內(nèi) ) 時,相應地函數(shù)取得增量 △y = f(x0 △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f'(x0) ,即導數(shù)第一定義

(二)導數(shù)第二定義

設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f'(x0) ,即  導數(shù)第二定義

(三)導函數(shù)與導數(shù)

如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導,就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應著一個確定的導數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導函數(shù)簡稱導數(shù)。

(四)單調(diào)性及其應用 

1.利用導數(shù)研究多項式函數(shù)單調(diào)性的一般步驟

(1)求f¢(x)
(2)確定f¢(x)在(a,b)內(nèi)符號  (3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

2.用導數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

(1)求f¢(x)
(2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;  f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間

學習了導數(shù)基礎(chǔ)知識點,接下來可以學習高二數(shù)學中涉及到的導數(shù)應用的部分。

 

相關(guān)鏈接:

高中網(wǎng)校培訓
高一課程輔導
高二課程輔導
高考課程輔導
學而思網(wǎng)校

×