【性?xún)r(jià)比】環(huán)保工程師暢學(xué)口碑班
主講老師:錢(qián)民剛,李群高,魏京花、岳冠華、張英、金安琍等
適合專(zhuān)業(yè):公共基礎(chǔ)科目
免費(fèi)試聽(tīng)
聽(tīng)課
課程與PC端同步更新,充分利用零碎時(shí)間。做題
海量精選試題,想練就練,瞬間提分。答疑
海量精選試題,想練就練,瞬間提分。直播
講師大咖面對(duì)面,有問(wèn)有大收獲多。垂直軸定理
一個(gè)平面剛體薄板對(duì)于垂直它的平面的軸的轉(zhuǎn)動(dòng)慣量,等于繞平面內(nèi)與垂直軸相交的任意兩正交軸的轉(zhuǎn)動(dòng)慣量之和。
表達(dá)式:iz=ix iy
剛體對(duì)一軸的轉(zhuǎn)動(dòng)慣量,可折算成質(zhì)量等于剛體質(zhì)量的單個(gè)質(zhì)點(diǎn)對(duì)該軸所形成的轉(zhuǎn)動(dòng)慣量。由此折算所得的質(zhì)點(diǎn)到轉(zhuǎn)軸的距離?,稱(chēng)為剛體繞該軸的回轉(zhuǎn)半徑κ,其公式為?i=mk^2,式中m為剛體質(zhì)量;i為轉(zhuǎn)動(dòng)慣量。
轉(zhuǎn)動(dòng)慣量的量綱為l^2m,在si單位制中,它的單位是kg?m^2。
剛體繞某一點(diǎn)轉(zhuǎn)動(dòng)的慣性由更普遍的慣量張量描述。慣量張量是二階對(duì)稱(chēng)張量,它完整地刻畫(huà)出剛體繞通過(guò)該點(diǎn)任一軸的轉(zhuǎn)動(dòng)慣量的大小。
補(bǔ)充對(duì)轉(zhuǎn)動(dòng)慣量的詳細(xì)解釋及其物理意義:
先說(shuō)轉(zhuǎn)動(dòng)慣量的由來(lái),先從動(dòng)能說(shuō)起大家都知道動(dòng)能e=(1/2)mv^2,而且動(dòng)能的實(shí)際物理意義是:物體相對(duì)某個(gè)系統(tǒng)(選定一個(gè)參考系)運(yùn)動(dòng)的實(shí)際能量,(p勢(shì)能實(shí)際意義則是物體相對(duì)某個(gè)系統(tǒng)運(yùn)動(dòng)的可能轉(zhuǎn)化為運(yùn)動(dòng)的實(shí)際能量的大小)。
e=(1/2)mv^2?(v^2為v的2次方)
把v=wr代入上式?(w是角速度,r是半徑,在這里對(duì)任何物體來(lái)說(shuō)是把物體微分化分為無(wú)數(shù)個(gè)質(zhì)點(diǎn),質(zhì)點(diǎn)與運(yùn)動(dòng)整體的重心的距離為r,而再把不同質(zhì)點(diǎn)積分化得到實(shí)際等效的r)
得到e=(1/2)m(wr)^2
由于某一個(gè)對(duì)象物體在運(yùn)動(dòng)當(dāng)中的本身屬性m和r都是不變的,所以把關(guān)于m、r的變量用一個(gè)變量k代替,? k=mr^2
得到e=(1/2)kw^2? k就是轉(zhuǎn)動(dòng)慣量,分析實(shí)際情況中的作用相當(dāng)于牛頓運(yùn)動(dòng)平動(dòng)分析中的質(zhì)量的作用,都是一般不輕易變的量。
這樣分析一個(gè)轉(zhuǎn)動(dòng)問(wèn)題就可以用能量的角度分析了,而不必拘泥于只從純運(yùn)動(dòng)角度分析轉(zhuǎn)動(dòng)問(wèn)題。
相關(guān)課程
最新文章