當前位置: 網校> 考研培訓> 考研數學在線課程
新東方在線 考研培訓

考研數學在線課程

發(fā)布時間:2021年09月26日
新東方考研免費試聽課程
  • 考研英語小作文備考技巧
  • 考研英語真題高頻核心詞總結
  • 考研高等數學-函數極限的性質
  • 毛中特必學考點解析
  • 考研管綜數學課程
  • 考研管綜邏輯課程
新東方考研選課中心
新東方考研套餐推薦
全程班
適用缺乏規(guī)劃、效率低下、高性價比
資深大咖+溫暖領學陪練+一站式解決備考疑難。 詳情>
1190-2980
直通車
適用基礎薄弱、自制力弱、需要監(jiān)督
大咖全程陪學帶練+班主任1V1導學督學 +專屬答疑老師1V1服務+批改服務 詳情>
4090-7690
無憂計劃
適用擇校迷茫、缺乏規(guī)劃、基礎薄弱
小班+主講老師1v1規(guī)劃答疑+ 定制擇校報告+專屬作文模板 詳情>
12800-19800
新東方考研師資介紹
王江濤 風格鮮明、趣味十足

新東方考研英語首席主講,寫作輔導實力教師,新東方20周年功勛教師,英語學習暢銷書作者。北京外國語大學英語語言文學學士,北京大學碩士,曾任中國政府代表團高級翻譯出訪歐美。多年考研英語教學經驗。代表作:《考研英語高分寫作》、《考研英語高分寫作字帖》、《十天搞定考研詞匯》等。

董仲蠡 清新脫俗、邏輯清晰

新東方在線實力教師,新東方20周年功勛教師。主講四六級翻譯。新東方教育科技集團教學培訓師,新東方教育集團優(yōu)秀教師。畢業(yè)于吉林大學,07年加入沈陽新東方學校。主授國內考試課程,橫跨綜合、詞匯和閱讀各類課程。英文底蘊深厚,課程充實緊湊,對考試分析透徹,考點把握精確。

楊超 思路清晰、輕松幽默

美國加州州立大學博士后,斯坦福大學訪問學者。從事考研數學輔導十多年,把教學當樂趣,潛心研究考題,原創(chuàng)了很多快捷解法和秒殺公式,同時又提出在基礎階段練好三大計算(求極限導數積分)。

郝明 邏輯清晰、耐心專業(yè)

新東方考研政治學科負責人、主講老師,集團優(yōu)秀教師,馬克思主義中國化碩士,十年考研政治一線教學經驗,考研政治全能型教師,擅于從命題人的角度剖析知識考點,梳理重點難點。使學員輕松愉快的掌握破題套路,玩轉考研政治。授課邏輯清晰、語言風趣幽默,深受學員歡迎的"好老師"。

張鑫 風格鮮明、幽默風趣

北京工業(yè)大學工科碩士,新東方在線管綜數學教師,教學經驗豐富,秉承"審題+結論=玩轉教學!" 的教學理念,倡導"做題、變題、講題"三步學習法,通過獨特的思維訓練讓學員輕松提分。

網絡課程 我們是認真的
其他機構
  • 經驗少、不資深
  • 課時太多看不完或太少知識點不全
  • 無特別服務
  • 無教材或教材不全
新東方在線考研
  • 新東方明星師資陣容,全速助攻
  • 直錄博課程結合,自主選擇學校時間
  • 作文批改,知識堂答疑,考前診斷等等
  • 全套精編密訓資料,電子講義
選擇新東方在線的8個理由
  • 專業(yè)名師

    精選名師授課
    授課經驗豐富
  • 教研團隊

    數百人教研團隊
    精細模塊化分工
  • 授課方法

    直播、錄播結合
    學習效果事半功倍
  • 培訓經驗

    十數年輔導經驗
    提高復習效果
  • 高清視頻

    涵蓋考試重點難點
    支持打包下載
  • 上市機構

    紐交所上市公司
    全國數千家代理
  • 正規(guī)公司

    公司備案資質完整
    安全可靠有保障
  • 百強品牌

    連獲多項大獎
    受到廣泛認可

學習資料

考研數學:如何高效復習線性代數

向量
本章的重點有:
1、向量組的線性相關性證明、線性表出等問題,解決此類問題的關鍵在于深刻理解向量組的線性相關性概念,掌握線性相關性的幾個相關定理,另外還要注意推證過程中邏輯的正確性,還要善于使用反證法。

2、向量組的極大無關組、等價向量組、向量組及矩陣秩的概念,以及它們之間的相互關系。要求會用矩陣的初等變換求向量組的極大線性無關組以及向量組或者矩陣的秩。

特征值與特征向量
本章的基本要求有三點:
1、要會求特征值、特征向量
對于具體給定的數值型矩陣,一般方法是通過特征方程∣λE-A∣=0求出特征值,然后通過求解齊次線性方程組(λE-A)ξ=0的非零解得出對應特征值的特征向量,而對于抽象的矩陣來說,在求特征值時主要考慮利用定義Aξ=λξ,另外還要注意特征值與特征向量的性質及其應用。

2、矩陣的相似對角化問題
要求掌握一般矩陣相似對角化的條件,但是重點是實對稱矩陣的相似對角化,即實對稱矩陣的正交相似于對角陣。這塊的知識出題比較靈活,可直接出題,也可以根據矩陣A的特征值、特征向量來確定矩陣A中的參數或者確定矩陣A。另外由于實對稱矩陣不同特征值的特征向量是相互正交的,這樣還可以由已知特征值λ1的特征向量確定出λ2(λ2≠λ1)對應的特征向量,從而確定出矩陣A。

3、相似對角化之后的應用,主要是利用矩陣的相似對角化計算行列式或者求矩陣的方冪。