當前位置: 網校> 考研培訓> 南昌考研數學補習班
新東方在線 考研培訓

南昌考研數學補習班

發(fā)布時間:2021年05月08日
新東方考研免費試聽課程
  • 考研英語小作文備考技巧
  • 考研英語真題高頻核心詞總結
  • 考研高等數學-函數極限的性質
  • 毛中特必學考點解析
  • 考研管綜數學課程
  • 考研管綜邏輯課程
新東方考研選課中心
新東方考研套餐推薦
全程班
適用缺乏規(guī)劃、效率低下、高性價比
資深大咖+溫暖領學陪練+一站式解決備考疑難。 詳情>
1190-2980
直通車
適用基礎薄弱、自制力弱、需要監(jiān)督
大咖全程陪學帶練+班主任1V1導學督學 +專屬答疑老師1V1服務+批改服務 詳情>
4090-7690
無憂計劃
適用擇校迷茫、缺乏規(guī)劃、基礎薄弱
小班+主講老師1v1規(guī)劃答疑+ 定制擇校報告+專屬作文模板 詳情>
12800-19800
新東方考研師資介紹
王江濤 風格鮮明、趣味十足

新東方考研英語首席主講,寫作輔導實力教師,新東方20周年功勛教師,英語學習暢銷書作者。北京外國語大學英語語言文學學士,北京大學碩士,曾任中國政府代表團高級翻譯出訪歐美。多年考研英語教學經驗。代表作:《考研英語高分寫作》、《考研英語高分寫作字帖》、《十天搞定考研詞匯》等。

董仲蠡 清新脫俗、邏輯清晰

新東方在線實力教師,新東方20周年功勛教師。主講四六級翻譯。新東方教育科技集團教學培訓師,新東方教育集團優(yōu)秀教師。畢業(yè)于吉林大學,07年加入沈陽新東方學校。主授國內考試課程,橫跨綜合、詞匯和閱讀各類課程。英文底蘊深厚,課程充實緊湊,對考試分析透徹,考點把握精確。

楊超 思路清晰、輕松幽默

美國加州州立大學博士后,斯坦福大學訪問學者。從事考研數學輔導十多年,把教學當樂趣,潛心研究考題,原創(chuàng)了很多快捷解法和秒殺公式,同時又提出在基礎階段練好三大計算(求極限導數積分)。

郝明 邏輯清晰、耐心專業(yè)

新東方考研政治學科負責人、主講老師,集團優(yōu)秀教師,馬克思主義中國化碩士,十年考研政治一線教學經驗,考研政治全能型教師,擅于從命題人的角度剖析知識考點,梳理重點難點。使學員輕松愉快的掌握破題套路,玩轉考研政治。授課邏輯清晰、語言風趣幽默,深受學員歡迎的"好老師"。

張鑫 風格鮮明、幽默風趣

北京工業(yè)大學工科碩士,新東方在線管綜數學教師,教學經驗豐富,秉承"審題+結論=玩轉教學!" 的教學理念,倡導"做題、變題、講題"三步學習法,通過獨特的思維訓練讓學員輕松提分。

網絡課程 我們是認真的
其他機構
  • 經驗少、不資深
  • 課時太多看不完或太少知識點不全
  • 無特別服務
  • 無教材或教材不全
新東方在線考研
  • 新東方明星師資陣容,全速助攻
  • 直錄博課程結合,自主選擇學校時間
  • 作文批改,知識堂答疑,考前診斷等等
  • 全套精編密訓資料,電子講義
選擇新東方在線的8個理由
  • 專業(yè)名師

    精選名師授課
    授課經驗豐富
  • 教研團隊

    數百人教研團隊
    精細模塊化分工
  • 授課方法

    直播、錄播結合
    學習效果事半功倍
  • 培訓經驗

    十數年輔導經驗
    提高復習效果
  • 高清視頻

    涵蓋考試重點難點
    支持打包下載
  • 上市機構

    紐交所上市公司
    全國數千家代理
  • 正規(guī)公司

    公司備案資質完整
    安全可靠有保障
  • 百強品牌

    連獲多項大獎
    受到廣泛認可

學習資料

考研數學:高等數學常見考點分析

4、向量代數和空間解析幾何。計算題:求向量的數量積,向量積及混合積;求直線方程,平面方程;判定平面與直線間平行、垂直的關系,求夾角;建立旋轉面的方程;與多元函數微分學在幾何上的應用或與線性代數相關聯(lián)的題目。這一部分的難度在考研數學中應該是相對簡單的,找輔導書上的習題練習,需要做到快速正確的求解。

5、多元函數的微分學。主要考查偏導數存在、可微、連續(xù)的判斷、多元函數和隱函數的一階、二階偏導數、多元函數極值或條件極值在與經濟上的應用、二元連續(xù)函數在有界平面區(qū)域上的最大值和最小值。此外,數學一還要求會計算方向導數、梯度、曲線的切線與法平面、曲面的切平面與法線判定一個二元函數在一點是否連續(xù),偏導數是否存在、是否可微,偏導數是否連續(xù);求多元函數(特別是含有抽象函數)的一階、二階偏導數,求隱函數的一階、二階偏導數;求二元、三元函數的方向導數和梯度;求曲面的切平面和法線,求空間曲線的切線與法平面,該類型題是多元函數的微分學與前面向量代數與空間解析幾何的綜合題,應結合起來復習;多元函數的極值或條件極值在幾何、物理與經濟上的應用題;求一個二元連續(xù)函數在一個有界平面區(qū)域上的最大值和最小值。這部分應用題多要用到其他領域的知識,在復習時要引起注意,可以找一些題目做做,找找這類題目的感覺。

6、多元函數的積分學。包括二重積分在各種坐標下的計算,累次積分交換次序。數一還要求掌握三重積分,曲線積分和曲面積分以及相關的重要公式。二重、三重積分在各種坐標下的計算,累次積分交換次序;第一型曲線積分、曲面積分計算;第二型(對坐標)曲線積分的計算,格林公式,斯托克斯公式及其應用;第二型(對坐標)曲面積分的計算,高斯公式及其應用;梯度、散度、旋度的綜合計算;重積分,線面積分應用;求面積,體積,重量,重心,引力,變力作功等。

7、微分方程。主要考查一階微分方程的通解或特解、二階線性常系數齊次和非齊次方程的特解或通解、微分方程的建立與求解。差分方程的基本概念與一介常系數線形方程求解方法。求典型類型的一階微分方程的通解或特解:這類問題首先是判別方程類型,求線性常系數齊次和非齊次方程的特解或通解;根據實際問題或給定的條件建立微分方程并求解