錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
新東方考研英語首席主講,寫作輔導(dǎo)實(shí)力教師,新東方20周年功勛教師,英語學(xué)習(xí)暢銷書作者。北京外國語大學(xué)英語語言文學(xué)學(xué)士,北京大學(xué)碩士,曾任中國政府代表團(tuán)高級翻譯出訪歐美。多年考研英語教學(xué)經(jīng)驗(yàn)。代表作:《考研英語高分寫作》、《考研英語高分寫作字帖》、《十天搞定考研詞匯》等。
新東方在線實(shí)力教師,新東方20周年功勛教師。主講四六級翻譯。新東方教育科技集團(tuán)教學(xué)培訓(xùn)師,新東方教育集團(tuán)優(yōu)秀教師。畢業(yè)于吉林大學(xué),07年加入沈陽新東方學(xué)校。主授國內(nèi)考試課程,橫跨綜合、詞匯和閱讀各類課程。英文底蘊(yùn)深厚,課程充實(shí)緊湊,對考試分析透徹,考點(diǎn)把握精確。
美國加州州立大學(xué)博士后,斯坦福大學(xué)訪問學(xué)者。從事考研數(shù)學(xué)輔導(dǎo)十多年,把教學(xué)當(dāng)樂趣,潛心研究考題,原創(chuàng)了很多快捷解法和秒殺公式,同時又提出在基礎(chǔ)階段練好三大計(jì)算(求極限導(dǎo)數(shù)積分)。
新東方考研政治學(xué)科負(fù)責(zé)人、主講老師,集團(tuán)優(yōu)秀教師,馬克思主義中國化碩士,十年考研政治一線教學(xué)經(jīng)驗(yàn),考研政治全能型教師,擅于從命題人的角度剖析知識考點(diǎn),梳理重點(diǎn)難點(diǎn)。使學(xué)員輕松愉快的掌握破題套路,玩轉(zhuǎn)考研政治。授課邏輯清晰、語言風(fēng)趣幽默,深受學(xué)員歡迎的"好老師"。
北京工業(yè)大學(xué)工科碩士,新東方在線管綜數(shù)學(xué)教師,教學(xué)經(jīng)驗(yàn)豐富,秉承"審題+結(jié)論=玩轉(zhuǎn)教學(xué)!" 的教學(xué)理念,倡導(dǎo)"做題、變題、講題"三步學(xué)習(xí)法,通過獨(dú)特的思維訓(xùn)練讓學(xué)員輕松提分。
專業(yè)名師
精選名師授課教研團(tuán)隊(duì)
數(shù)百人教研團(tuán)隊(duì)授課方法
直播、錄播結(jié)合培訓(xùn)經(jīng)驗(yàn)
十?dāng)?shù)年輔導(dǎo)經(jīng)驗(yàn)高清視頻
涵蓋考試重點(diǎn)難點(diǎn)上市機(jī)構(gòu)
紐交所上市公司正規(guī)公司
公司備案資質(zhì)完整百強(qiáng)品牌
連獲多項(xiàng)大獎考研數(shù)學(xué):線代知識框架
線性代數(shù)知識點(diǎn)框架(二)
在利用高斯消元法求解線性方程組的過程中,涉及到一種重要的運(yùn)算,即把某一行的倍數(shù)加到另一行上,也就是說,為了研究從線性方程組的系數(shù)和常數(shù)項(xiàng)判斷它有沒有解,有多少解的問題,需要定義這樣的運(yùn)算,這提示我們可以把問題轉(zhuǎn)為直接研究這種對n元有序數(shù)組的數(shù)量乘法和加法運(yùn)算。
數(shù)域上的n元有序數(shù)組稱為n維向量。設(shè)向量a=(a1,a2,...,an),稱ai是a的第i個分量。
n元有序數(shù)組寫成一行,稱為行向量,同時它也可以寫為一列,稱為列向量。要注意的是,行向量和列向量沒有本質(zhì)區(qū)別,只是元素的寫法不同。
矩陣與向量通過行向量組和列向量組相聯(lián)系。
對給定的向量組,可以定義它的一個線性組合。線性表出定義的是一個向量和另外一組向量之間的相互關(guān)系。
利用矩陣的列向量組,我們可以把一個線性方程組有沒有解的問題轉(zhuǎn)化為一個向量能否由另外一組向量線性表出的問題。同時要注意這個結(jié)論的雙向作用。
從簡單例子(如幾何空間中的三個向量)可以看到,如果一個向量a1能由另外兩個向量a2、a3線性表出,則這三個向量共面,反之則不共面。為了研究向量個數(shù)更多時的類似情況,我們把上述兩種對向量組的描述進(jìn)行推廣,便可得到線性相關(guān)和線性無關(guān)的定義。
通過一些簡單例子體會線性相關(guān)和線性無關(guān)(零向量一定線性無關(guān)、單個非零向量線性無關(guān)、單位向量組線性無關(guān)等等)。
從多個角度(線性組合角度、線性表出角度、齊次線性方程組角度)體會線性相關(guān)和線性無關(guān)的本質(zhì)。
部分組線性相關(guān),整個向量組線性相關(guān)。向量組線性無關(guān),延伸組線性無關(guān)。
相關(guān)課程
最新文章