當(dāng)前位置: 網(wǎng)校> 考研培訓(xùn)> 考研數(shù)學(xué)復(fù)習(xí)輔導(dǎo)
新東方在線 考研培訓(xùn)

考研數(shù)學(xué)復(fù)習(xí)輔導(dǎo)

發(fā)布時(shí)間:2021年05月07日
新東方考研免費(fèi)試聽課程
  • 考研英語小作文備考技巧
  • 考研英語真題高頻核心詞總結(jié)
  • 考研高等數(shù)學(xué)-函數(shù)極限的性質(zhì)
  • 毛中特必學(xué)考點(diǎn)解析
  • 考研管綜數(shù)學(xué)課程
  • 考研管綜邏輯課程
新東方考研選課中心
新東方考研套餐推薦
全程班
適用缺乏規(guī)劃、效率低下、高性價(jià)比
資深大咖+溫暖領(lǐng)學(xué)陪練+一站式解決備考疑難。 詳情>
1190-2980
直通車
適用基礎(chǔ)薄弱、自制力弱、需要監(jiān)督
大咖全程陪學(xué)帶練+班主任1V1導(dǎo)學(xué)督學(xué) +專屬答疑老師1V1服務(wù)+批改服務(wù) 詳情>
4090-7690
無憂計(jì)劃
適用擇校迷茫、缺乏規(guī)劃、基礎(chǔ)薄弱
小班+主講老師1v1規(guī)劃答疑+ 定制擇校報(bào)告+專屬作文模板 詳情>
12800-19800
新東方考研師資介紹
王江濤 風(fēng)格鮮明、趣味十足

新東方考研英語首席主講,寫作輔導(dǎo)實(shí)力教師,新東方20周年功勛教師,英語學(xué)習(xí)暢銷書作者。北京外國語大學(xué)英語語言文學(xué)學(xué)士,北京大學(xué)碩士,曾任中國政府代表團(tuán)高級(jí)翻譯出訪歐美。多年考研英語教學(xué)經(jīng)驗(yàn)。代表作:《考研英語高分寫作》、《考研英語高分寫作字帖》、《十天搞定考研詞匯》等。

董仲蠡 清新脫俗、邏輯清晰

新東方在線實(shí)力教師,新東方20周年功勛教師。主講四六級(jí)翻譯。新東方教育科技集團(tuán)教學(xué)培訓(xùn)師,新東方教育集團(tuán)優(yōu)秀教師。畢業(yè)于吉林大學(xué),07年加入沈陽新東方學(xué)校。主授國內(nèi)考試課程,橫跨綜合、詞匯和閱讀各類課程。英文底蘊(yùn)深厚,課程充實(shí)緊湊,對(duì)考試分析透徹,考點(diǎn)把握精確。

楊超 思路清晰、輕松幽默

美國加州州立大學(xué)博士后,斯坦福大學(xué)訪問學(xué)者。從事考研數(shù)學(xué)輔導(dǎo)十多年,把教學(xué)當(dāng)樂趣,潛心研究考題,原創(chuàng)了很多快捷解法和秒殺公式,同時(shí)又提出在基礎(chǔ)階段練好三大計(jì)算(求極限導(dǎo)數(shù)積分)。

郝明 邏輯清晰、耐心專業(yè)

新東方考研政治學(xué)科負(fù)責(zé)人、主講老師,集團(tuán)優(yōu)秀教師,馬克思主義中國化碩士,十年考研政治一線教學(xué)經(jīng)驗(yàn),考研政治全能型教師,擅于從命題人的角度剖析知識(shí)考點(diǎn),梳理重點(diǎn)難點(diǎn)。使學(xué)員輕松愉快的掌握破題套路,玩轉(zhuǎn)考研政治。授課邏輯清晰、語言風(fēng)趣幽默,深受學(xué)員歡迎的"好老師"。

張?chǎng)?/span> 風(fēng)格鮮明、幽默風(fēng)趣

北京工業(yè)大學(xué)工科碩士,新東方在線管綜數(shù)學(xué)教師,教學(xué)經(jīng)驗(yàn)豐富,秉承"審題+結(jié)論=玩轉(zhuǎn)教學(xué)!" 的教學(xué)理念,倡導(dǎo)"做題、變題、講題"三步學(xué)習(xí)法,通過獨(dú)特的思維訓(xùn)練讓學(xué)員輕松提分。

網(wǎng)絡(luò)課程 我們是認(rèn)真的
其他機(jī)構(gòu)
  • 經(jīng)驗(yàn)少、不資深
  • 課時(shí)太多看不完或太少知識(shí)點(diǎn)不全
  • 無特別服務(wù)
  • 無教材或教材不全
新東方在線考研
  • 新東方明星師資陣容,全速助攻
  • 直錄博課程結(jié)合,自主選擇學(xué)校時(shí)間
  • 作文批改,知識(shí)堂答疑,考前診斷等等
  • 全套精編密訓(xùn)資料,電子講義
選擇新東方在線的8個(gè)理由
  • 專業(yè)名師

    精選名師授課
    授課經(jīng)驗(yàn)豐富
  • 教研團(tuán)隊(duì)

    數(shù)百人教研團(tuán)隊(duì)
    精細(xì)模塊化分工
  • 授課方法

    直播、錄播結(jié)合
    學(xué)習(xí)效果事半功倍
  • 培訓(xùn)經(jīng)驗(yàn)

    十?dāng)?shù)年輔導(dǎo)經(jīng)驗(yàn)
    提高復(fù)習(xí)效果
  • 高清視頻

    涵蓋考試重點(diǎn)難點(diǎn)
    支持打包下載
  • 上市機(jī)構(gòu)

    紐交所上市公司
    全國數(shù)千家代理
  • 正規(guī)公司

    公司備案資質(zhì)完整
    安全可靠有保障
  • 百強(qiáng)品牌

    連獲多項(xiàng)大獎(jiǎng)
    受到廣泛認(rèn)可

學(xué)習(xí)資料

考研數(shù)學(xué):線代知識(shí)框架

系數(shù)矩陣和增廣矩陣。

高斯消元法中對(duì)線性方程組的初等變換,就對(duì)應(yīng)的是矩陣的初等行變換。階梯形方程組,對(duì)應(yīng)的是階梯形矩陣。換言之,任意的線性方程組,都可以通過對(duì)其增廣矩陣做初等行變換化為階梯形矩陣,求得解。

階梯形矩陣的特點(diǎn):左下方的元素全為零,每一行的第一個(gè)不為零的元素稱為該行的主元。

對(duì)不同的線性方程組的具體求解結(jié)果進(jìn)行歸納總結(jié)(有唯一解、無解、有無窮多解),再經(jīng)過嚴(yán)格證明,可得到關(guān)于線性方程組解的判別定理:首先是通過初等變換將方程組化為階梯形,若得到的階梯形方程組中出現(xiàn)0=d這一項(xiàng),則方程組無解,若未出現(xiàn)0=d一項(xiàng),則方程組有解;在方程組有解的情況下,若階梯形的非零行數(shù)目r等于未知量數(shù)目n,方程組有唯一解,若r<n,則方程組有無窮多解。

在利用初等變換得到階梯型后,還可進(jìn)一步得到最簡(jiǎn)形,使用最簡(jiǎn)形,最簡(jiǎn)形的特點(diǎn)是主元上方的元素也全為零,這對(duì)于求解未知量的值更加方便,但代價(jià)是之前需要經(jīng)過更多的初等變換。在求解過程中,選擇階梯形還是最簡(jiǎn)形,取決于個(gè)人習(xí)慣。

常數(shù)項(xiàng)全為零的線性方程稱為齊次方程組,齊次方程組必有零解。

齊次方程組的方程組個(gè)數(shù)若小于未知量個(gè)數(shù),則方程組一定有非零解。

利用高斯消元法和解的判別定理,以及能夠回答前述的基本問題(1)解的存在性問題和(2)如何求解的問題,這是以線性方程組為出發(fā)點(diǎn)建立起來的最基本理論。

對(duì)于n個(gè)方程n個(gè)未知數(shù)的特殊情形,我們發(fā)現(xiàn)可以利用系數(shù)的某種組合來表示其解,這種按特定規(guī)則表示的系數(shù)組合稱為一個(gè)線性方程組(或矩陣)的行列式。行列式的特點(diǎn):有n!項(xiàng),每項(xiàng)的符號(hào)由角標(biāo)排列的逆序數(shù)決定,是一個(gè)數(shù)。

通過對(duì)行列式進(jìn)行研究,得到了行列式具有的一些性質(zhì)(如交換某兩行其值反號(hào)、有兩行對(duì)應(yīng)成比例其值為零、可按行展開等等),這些性質(zhì)都有助于我們更方便的計(jì)算行列式。

用系數(shù)行列式可以判斷n個(gè)方程的n元線性方程組的解的情況,這就是克萊姆法則。

總而言之,可把行列式看作是為了研究方程數(shù)目與未知量數(shù)目相等的特殊情形時(shí)引出的一部分內(nèi)容。