錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
錄播+直播
新東方考研英語首席主講,寫作輔導實力教師,新東方20周年功勛教師,英語學習暢銷書作者。北京外國語大學英語語言文學學士,北京大學碩士,曾任中國政府代表團高級翻譯出訪歐美。多年考研英語教學經驗。代表作:《考研英語高分寫作》、《考研英語高分寫作字帖》、《十天搞定考研詞匯》等。
新東方在線實力教師,新東方20周年功勛教師。主講四六級翻譯。新東方教育科技集團教學培訓師,新東方教育集團優(yōu)秀教師。畢業(yè)于吉林大學,07年加入沈陽新東方學校。主授國內考試課程,橫跨綜合、詞匯和閱讀各類課程。英文底蘊深厚,課程充實緊湊,對考試分析透徹,考點把握精確。
美國加州州立大學博士后,斯坦福大學訪問學者。從事考研數(shù)學輔導十多年,把教學當樂趣,潛心研究考題,原創(chuàng)了很多快捷解法和秒殺公式,同時又提出在基礎階段練好三大計算(求極限導數(shù)積分)。
新東方考研政治學科負責人、主講老師,集團優(yōu)秀教師,馬克思主義中國化碩士,十年考研政治一線教學經驗,考研政治全能型教師,擅于從命題人的角度剖析知識考點,梳理重點難點。使學員輕松愉快的掌握破題套路,玩轉考研政治。授課邏輯清晰、語言風趣幽默,深受學員歡迎的"好老師"。
北京工業(yè)大學工科碩士,新東方在線管綜數(shù)學教師,教學經驗豐富,秉承"審題+結論=玩轉教學!" 的教學理念,倡導"做題、變題、講題"三步學習法,通過獨特的思維訓練讓學員輕松提分。
專業(yè)名師
精選名師授課教研團隊
數(shù)百人教研團隊授課方法
直播、錄播結合培訓經驗
十數(shù)年輔導經驗高清視頻
涵蓋考試重點難點上市機構
紐交所上市公司正規(guī)公司
公司備案資質完整百強品牌
連獲多項大獎線性代數(shù)考點剖析:相似對角化理論
一般方陣的相似對角化理論
這里要求掌握一般矩陣相似對角化的條件,會判斷給定的矩陣是否可以相似對角化,另外還要會矩陣相似對角化的計算問題,會求可逆陣以及對角陣。事實上,矩陣相似對角化之后還有一些應用,主要體現(xiàn)在矩陣行列式的計算或者求矩陣的方冪上,這些應用在歷年真題中都有不同的體現(xiàn)。
1、判斷方陣是否可相似對角化的條件:
(1)充要條件:An可相似對角化的充要條件是:An有n個線性無關的特征向量;
(2)充要條件的另一種形式:An可相似對角化的充要條件是:An的k重特征值滿足
(3)充分條件:如果An的n個特征值兩兩不同,那么An一定可以相似對角化;
(4)充分條件:如果An是實對稱矩陣,那么An一定可以相似對角化。
【注】分析方陣是否可以相似對角化,關鍵是看線性無關的特征向量的個數(shù),而求特征向量之前,必須先求出特征值。
2、求方陣的特征值:
(1)具體矩陣的特征值:
這里的難點在于特征行列式的計算:方法是先利用行列式的性質在行列式中制造出兩個0,然后利用行列式的展開定理計算;
(2)抽象矩陣的特征值:
抽象矩陣的特征值,往往要根據(jù)題中條件構造特征值的定義式來求,靈活性較大。