當(dāng)前位置: 網(wǎng)校> 高中教育培訓(xùn)> 高中物理網(wǎng)校
簡單網(wǎng)校 高中教育培訓(xùn)

高中物理網(wǎng)校_高中培訓(xùn)視頻

發(fā)布時間:2018年02月23日

高中網(wǎng)校推薦:簡單學(xué)習(xí)網(wǎng)

高中網(wǎng)校哪個好?最近很多同學(xué)都在找好一點的高中網(wǎng)校,小編根據(jù)同學(xué)口碑、師資、課程、服務(wù)、售后等等推薦一家高中網(wǎng)校:簡單學(xué)習(xí)網(wǎng)。簡單學(xué)習(xí)網(wǎng)成立于2007年,注冊學(xué)員累計2300萬,是國內(nèi)學(xué)生口碑不錯的高中網(wǎng)校,現(xiàn)在課程開設(shè)高中各年級26個教材版本的課程!建議同學(xué)們先試聽課程體驗一下。免費領(lǐng)取全科精品課>>

  • 優(yōu)秀教師錄課

    清北畢業(yè)或培養(yǎng)出多名清北學(xué)生師資

  • 高中語數(shù)英物化全科

    知識點期末復(fù)習(xí)資料

  • 學(xué)習(xí)服務(wù)貼心

    配套講義+家長報告

高中課程免費試聽

  • 高一同步課程

    《完形填空之詞語辨析》麻雪玲

    點擊試聽
  • 高中課程試聽

    高二同步課程

    《函數(shù)》 馮海君

    點擊試聽
  • 高中課程試聽

    高三同步課程

    《直線運動》 徐建烽

    點擊試聽

熱門課程推薦

  • 高一數(shù)學(xué)同步課程

    主講老師:
    孫明杰等

    互動視頻課、配套講義、快速答疑、智能錯題本、家長報告

    更多課程>>
  • 高二英語同步課程

    主講老師:
    麻雪玲等

    互動視頻課、配套講義、快速答疑、智能錯題本、家長報告

    更多課程>>
  • 高三英語沖刺課程

    主講老師:
    麻雪玲、張毅豪等

    互動視頻課、配套講義、快速答疑、智能錯題本、家長報告。

    更多課程>>
學(xué)員權(quán)益

簡單學(xué)習(xí)網(wǎng)高中課程優(yōu)勢

  • 好老師

    優(yōu)秀老師授課

    老師傳授典型題詳細(xì)辦法

    教學(xué)生舉一反三
    一題多解、一題巧解

  • 錯題本

    智能錯題本復(fù)習(xí)

    錯題追蹤復(fù)習(xí)

    聽課中的錯題能自動加入錯題本
    課后可方便復(fù)習(xí)及導(dǎo)出錯題本

  • 網(wǎng)絡(luò)答疑

    網(wǎng)絡(luò)快速答疑

    課程互動性強(qiáng)

    在線互動問答
    數(shù)理化英快速答疑

  • 課后練習(xí)

    經(jīng)典例題練習(xí)

    經(jīng)典例題課后練習(xí)

    老師針對課堂中的經(jīng)典例題
    為學(xué)生推送同類型題,掌握解題方法

免費試聽

學(xué)習(xí)資料

  冪函數(shù)y=x^a(a屬于R)

  1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中為常數(shù).

  2、冪函數(shù)性質(zhì)歸納.

  (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

  (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當(dāng)時,冪函數(shù)的圖象下凸;當(dāng)時,冪函數(shù)的圖象上凸;

  (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時,圖象在軸上方無限地逼近軸正半軸.

  方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。

  即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的求法:

  ○1 (代數(shù)法)求方程的實數(shù)根;

  ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

  (2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.