發(fā)布時間: 2016年03月22日
考研數(shù)學復習中,能夠把握好一些高頻易錯知識點的話,可以幫助我們更進一步深刻理解知識點,并且提高做題的效率和準確度。
1. 函數(shù)連續(xù)是函數(shù)極限存在的充分條件。若函數(shù)在某點連續(xù),則該函數(shù)在該點必有極限。若函數(shù)在某點不連續(xù),則該函數(shù)在該點不一定無極限。
2. 若函數(shù)在某點可導,則函數(shù)在該點一定連續(xù)。但是如果函數(shù)不可導,不能推出函數(shù)在該點一定不連續(xù)。
3. 基本初等函數(shù)在其定義域內(nèi)是連續(xù)的,而初等函數(shù)在其定義區(qū)間上是連續(xù)的。
4.在一元函數(shù)中,駐點可能是極值點,也可能不是極值點。函數(shù)的極值點必是函數(shù)的駐點或?qū)?shù)不存在的點。
5. 設函數(shù)y=f(x)在x=a處可導,則函數(shù)y=f(x)的絕對值在x=a處不可導的充分條件是:f(a)=0,f'(a)≠0
6. 無窮小量與有界變量之積仍是無窮小量。
7. 可導是對定義域內(nèi)的點而言的,處處可導則存在導函數(shù), 只要一個函數(shù)在定義域內(nèi)某一點不可導,那么就不存在導函數(shù),即使該函數(shù)在其它各處均可導。
8. 在求極限的問題中,極限包括函數(shù)的極限和數(shù)列的極限,但在考試中一般出的都是函數(shù)的極限,求函數(shù)的極限中,主要是掌握公式,有些不常見的公式一定要記熟,這種類型的題一般屬于簡單題,但往更難一點的方向出題的話,它會和變上限的定積分聯(lián)系在一起出題。
9. 在運用兩個重要極限求函數(shù)極限的時候,一定要首先把所求的式子變換成類似于兩個重要極限的形式,其次還需要看自變量的取極限的范圍是否和兩個重要極限一樣。
10. 介值定理和零點定理的巧妙運用關鍵在于,觀察和變換所要證明的式子的形式,構(gòu)造輔助函數(shù)。
熱門推薦:
考研網(wǎng)校哪個好
新東方考研培訓班
考研培訓班
考研培訓機構(gòu)哪個好
考研英語網(wǎng)絡課程
文都考研網(wǎng)校
北京考研培訓班